Hose Stream Characterization and Effectiveness Modeling

David W. Stroup, P.E.

Building and Fire Research Laboratory

Outline

- Introduction
 - Nozzles and Fire Attack
 - Background
 - Fire Fighter Trainer
 - Previous Research
- Research Objectives
- Technical Approach
 - Laboratory-scale Tests
 - Full-scale Tests
 - Model Development
- Summary/Future work

Nozzles

Smooth Bore

Combination/Fog

Fire Attack

Straight Stream

Fog Pattern

Background

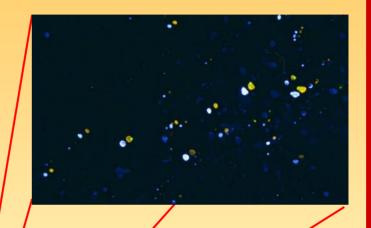
PRESS FIRE BENEFIELD FOR THE PROPERTY OF THE P

- Controversy continues over nozzle choice for structure fires
- Water application methods can impact:
 - tactical decisions
 - equipment choices
 - water supply requirements
 - fire fighter safety
- Limited information available concerning effectiveness

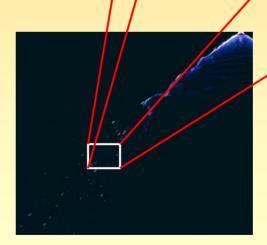
Research Objectives

- Characterize manual hose streams
 - flow rate
 - reach
 - pattern
 - drop size characteristics
- Evaluate the effectiveness for suppressing "real" fires
- Develop a model of hose stream fire suppression

Laboratory-scale Tests


• Real-scale Tests

· Model Development

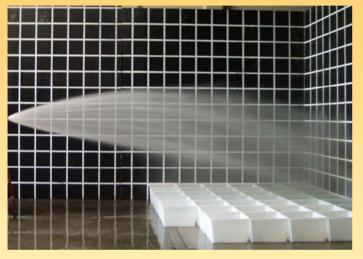


Laboratory-scale

Particle Tracking
Velocimetry and Imaging
(PTVI) Technique

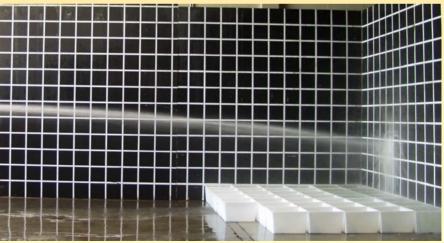
Laboratory-scale Tests

• Real-scale Tests


· Model Development

Laboratory-scale Tests

Real-scale Tests


· Model Development

Flow Pattern and Distribution Characterization

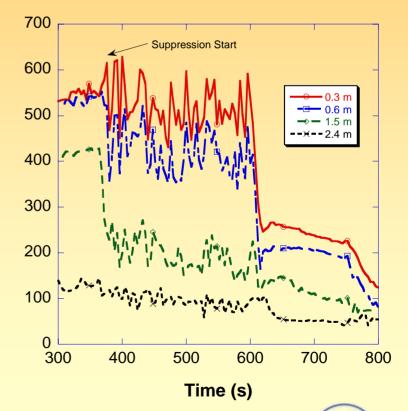
Fog Stream

Straight Stream

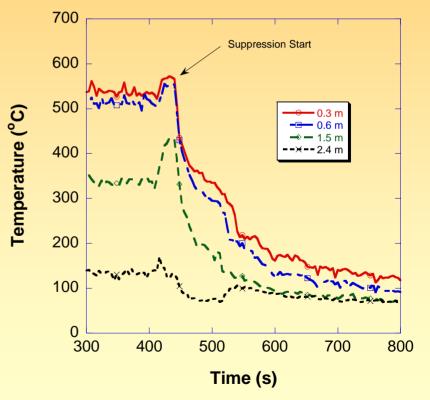
Compartment Tests

- 7 m x 7 m x 3.3 m
- Opening: 4.6 m wide x 2.1 m high
- Measurements:
 - Gas Temperatures
 - Velocities
 - Heat Flux
 - Mass of Water Delivered
 - Heat Release Rate
- Fuel Sources:
 - Heptane Spray Burner 2.2 MW
 - Wood Pallets

Fog Nozzle Test (2005)


Straight Stream Test (2005)

Results - Fog Nozzle



Temperature (°C)

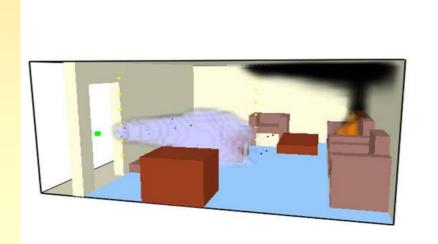
Results - Smooth Bore Nozzle

Suppression Test (2006)

Laboratory-scale Tests

Real-scale Tests

· Model Development


Laboratory-scale Tests

• Real-scale Tests

Model Development

Model Development

- Fire Dynamics Simulator (FDS) core
- First order approach similar to sprinkler model
- Droplet characteristics?

Summary/Future Work

- Complete Analysis of Test Results
- Use FDS 5 for Modeling
 - environmental conditions: fire only
 - nozzle characteristics: no fire
- Complete First Order Fire Suppression Model
- Data Comparison
- Refine Nozzle Characterization
- Additional Questions
- Additional Field Tests of Opportunity

